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E F F E C T  OF  P U L S E D  L O A D  F O R M  ON R E T A I N E D  

D E F L E C T I O N S  O F  R I G I D L Y - P L A S T I C  P L A T E S  

OF  A C O M P L E X  S H A P E  

Yu. V. Nemirovskii and T. P. Romanova UDC 539.3 

Plates with a complex shape are used extensively in structures subject to intense pulsed loads. In order to predict the 
degree of plate damage under the action of dynamic loading it is important to know the effect of the nature of change in load 
with time on finite displacements. 

All known solutions of this problem only concern rigidly-plastic round freely-supported plates [1-4]. It is concluded 
in [1, 4] that there is an insignificant dependent of retained plate deflection on the form of pulsed load although this is done 

on the basis of partial calculations with limited changes in values of operating loads. In [2, 3] after considering the whole 
possible range of loads it is concluded that the form of load may have a marked effect in retained deflections for round hinged 
plates. 

In this worl( simple analytical expressions are obtained on the basis of results in [5, 6] for maximum retained deflection 

of a rigidly-plastic plate with a complex shape. The effect of load pulse form on plate retained deflection is studied. A simple 
procedure is suggested which makes it possible to evaluate the damage for complex shaped plates under the action of an 
arbitrary dynamic load of high intensity. We consider an ideally rigidly-plastic plate under the action of a uniformly distributed 
arbitrary dynamic short-term load of intensity P(t) distributed over the surface. In shape this may be a regular polygonal plate, 
a round plate, a regular polygonal plate with rounded tips or a plate obtained from the latter by changing the mutual position 
of the rounded and rectilinear sections of the shape, and also an irregular polygonal plate on whose shape it is possible to 
inscribe a circle (Fig. 1). We assume the contour of the plate is hinged or restrained. All of these plates have similar dynamic 
behavior which has been ~onsidered in detail in [5, 6]. With quite a high level of loads plate dynamics may be accompanied 
by the occurrence, development, and disappearance of zones of intense plastic deformation Ip moving progressively. The 
equations which describe the dynamic behavior of such a plate have the form [5, 6] 

~ 3 ( 4 - - 3 ~ ) a = 2 p l ( r ) ~ 2 ( 3 - 2 ~ ) - r r t o ;  (1) 

(~&)" = pl(v) ,  (2) 

where Pl = P/r; r is the radius of a circle drawn on the polygonal contour or the radius of a round plate; a period means 

differentiation with respect to dimensionless time z = t/to; t o is characteristic time; m 0 = 12 M 0 to2(2 --  ~/)/(pr 3) for regular 

polygonal, round, and irregular plates on whose contour it is possible to draw a circle; m 0 = 12 M o t2(ctg~ + ak)(2 --  ~/)/[ctg~ 
+ ~b/sin2r 3] for polygonal plates with rounded tips; p is plate material surface density; M o is the limiting bending moment; 
7/ = 0 with a restrained contour; ~/ =" 1 with hinging; o~ is the angle of deviation for a rigid region I from the horizontal; 8 
= 8(r) is a dimensionless parameter which characterizes the size of the central plastic region Ip (Fig. 1, where IAOI = r, 

1,4OI = 8r, / OBA = ~, / B OC = r / OAB = 90~ 

Deflection W at the center of a circle drawn on a polygonal contour (point O, Fig. 1) is determined from the 
relationship 

co = ~a (w  = w / r ) .  (3) 
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Fig. 1 

Initial conditions for a andw are as follows: 

~(o)  = 6 (0)  =,1 , (0)  = w ( 0 )  = 0. (4) 

In order to determine the limiting static load & = 0 should be adopted in Eq. (1). Then the limiting load is determined 

from the condition 

pO = m i a p l  = min mo/[262(3 - 26)1 = mo/2. 
o<6~<x (5) 

Here the plastic zone Ip degenerates to point O. 
Let us in a section of time 0 _< ~r < r I (first phase) have pl(r)  _< pO (low loads), then in this period of  time the plate 

retains an undeformed state and it remains at rest. 

We determine the state of a plate at the instant of  the start of its movement. By integrating (2) taking account of the 

notation &0"k) = &k, t~(rk) = c~, 8(rk) = 8 k, we f'md that 

66=Jk(~ ' )+ake*k ,  Jk=/Px(s)ds, ~ = 0 ,  1 , 2 , . . . ,  
Tk 

where r k is the time at which the plastic zone Ip exists in an undegenerated form. By using this equality and excluding & from 

(1) and (2) we obtain 

whence 

[62(2 - 6)(Jk + 6k,~k)]" = mo = 2p~, 

62C2 - 6) = [2 p~ - ~'k) + 6~,(2 - 6k)~k]Cak + 6kdk) -I. 

From (6) it follows that with k = I 

(6) 
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lim df2(2 - ~f) = dfx2(2 - (~1) = 2 p O / p l ( T 1 )  �9 
T---*'I'], 

Whence it can be seen that 61 < 1 withPl(rl)  > 2p ~ and $1 >- 1 withPl(r l)  <-- 2p ~ This means that if the load is such that 
Pl(rl)  > 2Pl 0 ("high" load) then plate movement commences with a developed plastic zone lp and it will be described by system 

(1)-(3) with initial conditions 3 = 61 and (4). 
0 

With load pl  0 < p l ( r l )  < 2pi (since in a sense 6 cannot exceed values equal to one) it may be assumed that plate 

movement commences with absence of a plastic zone and it will be described by Eq. (1) with 8 = 1. 

We consider in detail plate movement under the action of a load an "impact" type increasing from zero and then falling. 

In this case in the second phase (r 1 _< r _< r2) with consideration of initial conditions a(rl)  = &(r D = 0, 6 = 1 we have 

a ( r )  --*-- 2JI(T) - 9~p~ - 7"1), 

+(~) = a(~- ) ,  

, ( , ' )  = 2Y1(~')  - v ~  - , . ) 2 ,  

w ( , - )  = ,~ (~) ,  
(7) 

where Yk(r) = [ 4 (s )ds  (k = 1, 2 . . . .  ). 
r~ 

We determine the end of this phase corresponding to the start of forming zone Ip. From (6) with k = 2, 62 = 1 we 

fred that 

6 ~ ( 4 -  a6) = 2p~ (J2 + &2) - [2p~ r -  r2) + &2]pl(r)  
(& + ~2) ~ 

whence it follows that wi thPl(r  2) = 2p ~ the equality 8(r2) = 0 is fulfilled and withPl(r) > 2p? and 8(r) < 1 the inequality 

$(r) < 0 is correct. Since 8 _< 1, then 8 starts to decrease which corresponds to an increase in zone Ip at instant of time r 2 

satisfying the condition r 2 satisfying the condition Pl(r2) = 2p 0. With r = r 2 

(8) 

During the third phase (r 2 < r < r3) movement occurs with a developed plastic zone Ip which may increase reaching 

its maximum size, and then it starts to contract to complete disappearance. Movement is described by set (1)-(3) with initial 

conditions 6(r 2) = 1, &(r 2) = &2, ~(r2) = c~2, w(r2) = ~02, w(r2) = w2- 
As a result of this we obtain 

T 

a ( T )  = 6--1[a2 --[- J2(T)] ,  Or(7") -- / [ a 2  "~ J2(8)] r "[- 02,  
7" 2 

~2( 2 -- r ----- [2plO( y -- "/'2) + a2] (J2  + a2)  -1 ,  

~k(r) = ~k2 + J2(r) ,  w ( r ) =  ~=(r  - r2) + Y=(r) + w2. 

(9) 

It can be seen from (9) that with r > r 2 and G(r) < 0, where 

GO)  = 2v~ -) + a d  - [2v~O - ~~) + , h l w ( r ) ,  

we have 8(r) < 0, and consequently plastic zone Ip increases, but with G(r) > 0 then Ip decreases and at instant r m > r2, 
when G(r m) = 0, the plastic region reaches its maximum size. 

At instant r 3 there is contraction of zone Ip to point 0 when 6(r3) = 1. Then time r 3 in accordance with (9) is 
determined from the condition 
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s2(~3) = 2p~ - T2). (10) 

At the end of the third movement phase 

~(~3) = a2 + J,(~3), 

~d 

a(r~) = f[a~ + J~(~)] 6-I(T) d~ + ,,~. 
r 2  

For the deflection at point O considering (8) and (10) and the relationship 

"rt. % ~'k 

we have 

~,(~-3) = ,~, + s2(,-3) = JI(T2) + S2(~'3) -- 2 p0(T2 -- T,), 
,r 2 -r 3 

@ P )2 + 

"rl ~'1 

+2T2J~0-2) + ~'~I2(~'3) + J2(T3)[J~(T2) + -h(T3)l/(2p~~ 

The fourth phase ('/3 < r ~_ "/4) OCCURS with degeneration of zone Ip to complete stopping of  the plate. Movement is 

described by set (1)-(3) with 6 = 1. As a result of this we obtain 

aCT) = ~3 + 2J3(~) - 2p~ - T3), 

~(~) = ~3 + 2YzCT) - po(~ _ T3)2 + a~CT - ~3), 

W ( ' / ' )  = W 3  4"  2 J 3 ( ' r )  - 2 / )~  "r - T 3 ) ,  

w(r)  = w3 + 2Y3(r) - p~ - T3) ~ + fi~3(T -- 1"3). 

From the condition &(T 4) = 0 the time for stopping is determined r 4 = r 1 + l l ( r4) /p~ [11(r4) is the total load pulse]. It can 
be seen that the time for cessation of movement does not depend on the form of the loading function and it is determined by 
its total pulse. 

Retained deflection at point 0 

= . ( , , >  = 4(,,>/(,,o)_ ] ' ( ,_  ,,),,(,) + f ( , _  , , > , , ( , )  
I" I 1-2 

(11) 

and in the case of a hinged round plate it conforms with the deflection obtained in [3]. 
. . 0 0 . . . 

For moderate loadspl < pl(r)  A 2Pl tune r 2 corresponds to the Instant of  plate stopping and movement is described 

by Eq. (7). Time r 2, determined from the condition ~(r2) = 0, satisfies the relationship 

and as can be seen it does not depend on pulse form. Retained deflection at point O 

"rl 

(12) 
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and for a hinged round plate it conforms with the result in [3]. 
0 0 

In the case of a rectangular pulse of  "moderate" load Pl = const, Pl < Pl --- 2Pl with 0 < r < r k the retained 

deflection of point O 

= [v (1 - v~  ~ H .  

With a dynamic load of high intensity arising instantaneously at the initial instant and then decreasing ("explosive" type) 

Pl(0) > 2p 0 the plastic zone Ip forms and it has the maximum size at the initial instant. Here within the structure described 

above the solution for the first and second phase of movement is discarded, it is assumed that r 1 = r 2, &(r2) = cz(r 2) = w(r 2) 
= w(r 2) = 0 and the initial value ~0 = ~(rl) is determined from the equality 

- 6o) = 2v~ 

obtained from (6) with the limited transition r --, r 1 with k = 1. The retained deflection at point O 

�9 r 4 

w l  = 3J2 / (4p  ~ + r l J  - f r p l ( r )  dr,  
1" 1 

(13) 

r 

where J = I Pl(Z)dz is the total load pulse. 

In the case of an arbitrary dynamic short-term load with very high amplitude it is possible to ignore action of  the load 

in time intervals r 1 _< r _< r 2 and r 3 _< r _< r 4, then it may be assumed that 

~ 3  a" 4 

"r 2 -r 1 

and the maximum retained deflection (11) is also determined approximately by Eq. (13). 
0 . . 

For a rectangular pulse of high load Pl = const, Pl > 2pl within the whole tune of pulse operation ~5(z) = ~o, and 

instant *m corresponds to the instant of load removal z k. Here the maximum retained deflection 

= [vx (1, 5 - v~ ~ H .  

We consider expression (13) for the maximum retained deflection in detail. We shall assume that r t = 0 and the load 
is removed at instant z = T. Then 

w l  = 3J2 / (4p  ~ - J*. (14) 

T T 

Here J = Io Pl(r)dr  is the total pulse; J"* = Io "rpl(~')dl"" 
U 

We can see that the maximum retained deflection depends not only on the total pulse J, but also on f .  This dependence 

for maximum retained deflection on J and J* for round hinged plates was noted in [3]. 

Thus, if the different forms of  pulse are such that they have the same integral characteristics J and J*, then the plates 

of complex shape in question after action on them of such pulsed loads have the same maximum deflections calculated by Eq. 

(14). In addition, calculations in a computer showed that the retained deflections will conform for all points of  a plate. 

Deflections at all points of a plate ~(x, y, r) are calculated by the equations 

u, , - )  = wOO, (x ,  v) I .  
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1- 

~ ( z , y , r ) =  d (x , y ) r -X /&(s )ds+~(r~) ,  (x ,y)  E I, n = O, 1, 2 , . . . ,  

where d(x, y) is the distance from point (x, y) to the supported side of region I (Fig. 1). In region K for a plate with rounded 
tips the deflection over line EF equals the deflection over LB of region I (Fig. 1). 

Given in Fig. 2 is the retained deflection of a square hinged plate with different forms of load function which have the 
1 1 

same integral characteristics J = 18, f = 9 (J = (r2/Mo) I, P(rt~ ~ = (r2/M~ I, rP(rt~ and corresponding to lines 

1-5 in Fig. 3: 

{ 1) Moo e(rto) = 18,0, 0r ~<> rl; ~< 1, 

r 2 ( 24(1 - 2r/3), 0 <~ r ~< 1, 
2) e( to) = o, > 1; 

k 

r 2 f Pnmxze-1-/Ta, 0 <~ r <. T3, 
3) Moo P(r to )  = I O, T > 7'3, 

P~-~a = 3 6 e ( e - 2 ) / ( e -  1) ~ ~ 23,8, T3 = ( e -  1) / [2(e-2)1  ~ 1,2; 

r2 / (Pmax4 - 12)r/T4 + 12, 0 ~< 7" <~ T4, 
4) ~oo P(rto) = ~. O, r > T4, 

P-~Y4 = 12(1 + vr2) ~ 28,97, T4 = 3/(2 + v/2) ~ 0,879; 

r 2 f 1 2 ( -3 r  2 + 3 r + 1 ) ,  0 ~ < r ~ < l ,  
s) -~o P( rto ) = 

0, r > l .  

In the case of a moderate load expression (12) for the maximum retained deflection (if it is assumed that 7" 1 = 0 and 
T is the time of load removal) takes the form 

w! = jz/po _ 2J*. (15) 

For a load of any form it is always possible to select a load equivalent to it with'a rectangular pulse so that retained 
deflections at all points of a plate after the action of these loads coincide. Here the amplitude of a rectangular pulse Pl = 
J2/(2J*), and the time of load operation T = 2J*/J. The maximum retained deflections will be calculated by Eq. (14) for a high 

load and by Eq. (15) for a moderate load. 
It follows from Eq. (14) that with a condition of a constant overall pulse J we obtain the greatest retained deflection 

for a load of an ideal pulse when the load is described by the Dirichiet function: 

T 

.~T~li~I~OPl(7") = with pl(7") dT" = J .  
o 

In fact, in this case for J* we have 

Then from (14) we obtain 

T T 

O<~J'= frPKr)dr<~T f pa(r)dr=TJ T-..o-+ O, 
o 0 

J* = O. 
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wt  = 3J2 /(4P~ �9 (16) 

With a pulsed load for hinged round and square plates Eq. (16) conforms with the results obtained in [9, 10]. 
We show that for an arbitrary dynamic load and a constant total pulse J there is no direct dependence of retained 

deflection on maximum load. We consider two functions with the same J and maximum loads Pl max (lines a and b in Fig. 4): 

1) pla(T) = ~ Plmax-- r(plrn~x-plr)/T, 0 ~ r ~T ,  
( O, r > T ,  

PiT = ply(T) > 2p~, Pa~,~ = pa,(0) > 2p~; 

2) Plb(r) = [ PaT+ r(Plmax--PlT)/T, 0 ~ r ~ T, 
( O, r > T .  

Then 

T 

o 
T 

Jg = / ~'mb(") d,- ---- ( 2 p ~  + p~r)T2/~, 
o 

and sincePl r < Pl max, then J :  < J;,  and consequently in view of (14) the retained deflection in case 1 will be greater fiaan 
in case 2. 

In [11] for a hinged beam, a hinged round plate, and a round cylindrical shell secured by rigid ends loaded by 
uniformly distributed external pressure varying with time, a procedure is suggested for estimating the level of structural damage 
for different forms of load pulse based on a single characteristic curve for parameters (pe/p~, JIJo) (Fig. 5): 

6(alao)2(1 - p~ = 1, 1 <~ p, lp ~ <~ 2, 
(a/jo)2[x - 4p~ = 1 ,  p,/po > 2. 

Here p0 is the limiting load for the structure in question; Pe is the effective force calculated by the equation 

(17) 
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(18) 

J is total load pulse: 

r! 

J = f p l ( r )  dr; (19) 
r0  

r 0 and zf are the time for the start and finish of structural deformation; J0 is an ideal pulse after whose action on the structure 

it acquires the critical maximum deflection w c of interest to us. 
In order to determine whether the structure reaches the critical maximum deflection w c after action on it of an arbitrary 

0 
load it is necessary to calculate the values Pc, Pl ,  J, and Jo" If a point (pe/p O, J/Jo) lies below the characteristic curve, then 
the maximum retained deflection will be less than the critical w c. 

Since expression for maximum retained deflection of the plate in question with a complex shape (11) and (12) under 

the action of an arbitrary dynamic load conform with expressions for retained deflection of the center of a round plate, then 

it is possible to expand the class of structures for which single characteristic curve (17) is constructed. 

Thus, in order to estimate whether the maximum retained deflection wf is reached for the plate in question with a 
complex shape the critical prescribed value w c as a result of the action of dynamic load pl(r)  it is necessary with respect to 

w c to determine the ideal pulse J0 by Eq. (16) causing this deflection. Then we calculate the total pulse of the operating load 

by (19) and the effective forcepe by Eq. (18). If a point (pe/p ~ J/Jo) lies below the characteristic curve (Fig. 5), then retained 

deflection wf will be less than the critical w c. 
This method for preliminary estimation of the level of damage for structures may be used successfully for a broad class 

of engineering calculations. 
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